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LETTER TO THE EDITOR

Cellular automata for quantum systems
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School of Engineering and Applied Science, Princeton University, Princeton, New Jersey
08544, USA

Received 28 July 1992

Abstract. Cellular automata for modelling quantum systems are presenied. The mass at
each site is updated according to rules that depend on the masses of neighbouring sites.
An essential feature of these local rules is that mass and probability are conserved. In the
limit of small spatial and time steps it is shown that the equation defining one class of
automata reduces to the Schrodinger equation and the equation defining another class of
automata reduces to the Dirac equation. Advantages of these methods are discussed.

Cellular automata have been defined as discrete space and time mathematical models
of physical systems. The state of each site of the cellular automaton changes with each
time step according to local rules of updating which require only the values of states
of the nearest neighbouring sites at the previous time. Cellular automata, which were
first considered by von Neumann and Ulam, have recently been used to model numerous
physical phenomena including diffusion, sound waves, hydrodynamics and phase
transitions [1-3]. A cellular automaton for modelling the Schrodinger equation of
quantum theory has also been presented, but the local updating rules do not conserve
probability [4]. It is the purpose of this research to present cellular automata for solving
the time-dependent equations of quantum theory which use local rules for updating
and which conserve probability and mass. The methods presented here have significant
advantages over conventional methods. Most if not all local three-dimensional conven-
tional methods for solving the time-dependent quantum equations numerically give
meaningless solutions that grow without bound if the spatial step is too small or the
time step is too large. However, the methods presented here, because they conserve
mass and probability, can never give solutions that grow without bound. In addition,
it is well known that the time-dependent Schrddinger and Dirac equations, which are
continuum equations in space and time, conserve mass and probability. If it should
turn out that space or time or both are quantized and discrete, it is possible that the
discrete equations presented here, which also conserve mass and probability, may give
more accurate results than the continuum equations.

First we will treat cellular automata for one-dimensional quantum systems and
then we will generalize the results to three spatial dimensions. Each spatial site j
consists of two independent subsites with the numbers m; and n;, which denote the
mass at each subsite. The total mass at spatial site j of the quantum system is the sum
of m; and »n,. Mass is transferred between the subsite with mass m, and the subsite
with mass n;,;. The amount of mass transferred at each update is given by

T}JH:K(”’JWJM)VZ (1)
hAt
K =m (2)
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where # and p are the constants of the Schrodinger equation, At is the time step and
Ax is the spatial distance between lattice points. The amount of mass transferred
between the subsite with mass m; and the subsite with mass n,_, is given by

T = k(mn,_)"2 (3)

Finally, the amount of mass transferred between the subsite with mass n, and the
subsite with mass m; is

T, = A (nm)'? )
A; =2kt (5

where V; is the potential at site j. The initial subsite masses m; and n; are obtained
from the initial wavefunction ¢, at site j

W =a,+ib, ¥
m; = aj , ' (8
ny = b} 9

where the amplitudes ; and b, are the real and imaginary parts of the wavefunction
at site j. The directions of transfer are determined by the signs of the amplitudes

T 1= Kabys (10)
]}'j_1=Kaij_l (11)
T,;=Aba. (12)

Thus if the amplitudes @; and b, are both positive or both negative, the transfer of
mass will take place from the subsite with mass m, to the subsite with mass n,.,. The
rules (1), (3) and (4) determine the mass distribution at any later time when combined
with the rule that all transfer directions at a subsite are reversed when the mass at that
subsite approaches zero. This reversal corresponds to a change in the sign of the
amplitude at that subsite. We add the condition that the mass at any subsite cannot
be less than zero. Once the initial conditions have been given, the amplitudes themselves
do not need to be calculated. Since mass is transferred from one subsite to another,
mass and probability are conserved.

Next we will show that in the limit of small time and spatial steps, the finite
difference equation of the cellular automaton converges to the Schridinger equation.
According to the automaton rules (1), (3) and (4) the updated mass M; at site j is
given by

Alj =m;- K(mjn-_l)l”z— K(mjnj+1) 12 + )tj(mjnj)l/z. (]3)
This equation can also be expressed in terms of the amplitudes
M =m ~Ka_,-17j_1—xa_,-bj+‘ +A_,-a_,-bj. (14)

In the limit of small time and spatial steps we have

M,—m,=2Ata(x, t)‘;—‘: (15)

2
bj_1—2bj+bj+,=(Ax)2§;§. (]6)
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Combining (2), (5), (6), (14), (15) and (16), we obtain the partial differential equation
2 2 o vb(x, 1) (17}

Similarly the equation for the updated mass N, at site j
'N.'i = nJ + K ("lj_] n-r)l.f2 + K(Mj+lnj)l/2 - Aj(mjnj)ljz (18)

gives us the partial differential equation
—=— ——Va(x,1). (19}
mn

Finally noting that the wavefunction #(x, t} can be expressed in terms of real and
imaginary amplitudes

P(x, 1) =a(x, 1} +ib(x, 1) (20)
we see that (17) and (19) are equivalent to the Schridinger equation
oy Ky
h— = —— —+ . 1
= i Vs ) (21)

In order to determine how the discretization in space and time affected the results,
a truncation error analysis was carried out on the update equations (14) and (18).
Using Taylor series expansions, we found that the truncation error in time is O(Af)
and the truncation error in space is O({Ax)?).

The rules for the cellular automaton were easily programmed. In order to eliminate
the effect that occurs when the mass at a subsite is exactly zero, the average local mass
was used in the transfer expressions. For example the transfer expressions (1) becomes

I},j-n = K(mjﬁj"‘l)]/z (22)
= (1-3)m + imy_y + fmyp +im ¥ (23)
ﬁ;-ﬂ=(1—35)"j+1+§nj+§ﬂ,+2+§"ﬁ1 (24)

where the averaging parameter { is much less than one and the starred quantities are
the masses at the previous time step. Excellent results were obtained from this algorithm,
which conserved mass and probability.

The results are easily generalized to treat three spatial dimensions. The amount of
mass transferred in the x-direction between the subsite with mass my; and the subsite
with mass 1, is '

Tt it = Kx(mijkn:+ljk)1/2 (25)

and the amount of mass transferred in the x-direction between the subsite with mass
my;. and the subsite with mass m._y is

I_ﬂgl—l_ﬂ( = Kx(muk"r-ljkjuz (26)

fiAt

T @)

Kx
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Similar expressions apply for the y- and z-directions

qu,yﬂk = Ky(mijk"rjﬂk)uz (28)

Tici-1= Ky(mijkn('i—lk)l/z (29)

Tyihn = Kl Myattperr)' (30)

Tinik—1= K:(mﬁknijk-l)vz (31)
h Al

T ulay)? 2
h At

K. = m . (33}

The amount of mass transferred between the subsite with mass n; and the subsite
with mass my, is

T;‘jk,yk = Ayk(nijkmuk)uz (34)
Ay =2(kx + 1, + %)t Vi (35)
Yiix =2Vijk AI/ h. (36)

The automaton rules for calculating the updated masses M;; and Ny, from the current
masses my; and ny, are

My =my— Torimue— Ticieye — Tyrg—txe — Tyrre— Ty -1

= Tynprerr+ Tpryix (37)
Nix = e+ Ticvgign t Teeggioin + Ty + Ty T Ty,
+ Tk n,ge — Trp (38)

As before, the actual directions of transfer are determined by the signs of the amplitudes.
In the limit of small time and spatial steps it can be shown by using the method
discussed for the one-dimensional case that (37) and (38) reduce to the three-
dimensional Schrédinger equation
3 # &’y ¢
ﬁ§=—§[ﬁ+ﬁf+5}%] F V(% 3, 7 2). (39)
If these automaton rules correspond in some sense to a law of nature then it should
be possible to find automaton rules which conserve mass and which reduce to the
Dirac equation in the Hmit of small step sizes. Since the wavefunction of the Dirac
equation has four complex components, we consider an automaton where each spatial
site jjk consists of eight independent subsites with the mass numbers m, ;. and n, .,
where r=1,2,3,4. The total mass at the spatial site ijk is the sum of these eight
numbers. The essential feature of the automaton corresponding to the Schrédinger
equation is the update rule that the amount of mass transferred between adjacent
subsites is proportional to the square root of the product of the masses of the two
adjacent subsites. We have found that a2 Dirac automaton can be formulated by using
similar update rules that specify eight mass transfers between eight pairs of adjacent
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subsites. These discretization rules can be regarded as representing coupled maps. For
the x-direction the eight transfer rules for subsites at positions ik and 1+ 1jk are

Tm4.i+1jk,ml,ijk = K(m4,a+1jkm1.w.)”2

Tn4.a'+1jk,n1,yk = K("4.i+1,;k"1,y‘k)1/2

Tns, i1 kw2, ik = K (m3.i+ljkm2,yk)l/2

T3 i+ 1kn2 ik = K(ns.i+1jk "z,:jk)uz

Tz it yoms,pe = K (m2,i+]jk ms,uk)uz (40)
Ton isvjhns gk = K(nz,i-i-ljh“s,:jk)l/z ‘ I
Tt i+ 1l ma gk = K(ml,:‘+ljkm4,ijk)”2

Tanivionaik = K("E,f+1jk"4,ijk)uz

K =cAt/Ax.

For example the mass transfer term T4, .+ 1ji.m1, 5« gives the amount of mass transferred
from the subsite with mass m, at position i + 1jk to the subsite with mass m, at position
ijk in the time interval Az As before, if the initial amplitudes are positive at both
subsites, the direction of transfer is from the first subsite to the second. All directions
of transfer at a particular subsite are reversed as the mass at that subsite tends to zero.
The eight transfer rules for the y-direction between subsites at position ijk and position

ij+1k are

_ 1/2
Toagr1kom pk = K(n-rt,:'j-i-lkml,qk)

Tortema,geik = K (Mg 1By i) 1/2
Tonz.piomsgirrk = K (M3 gyt )
Tons g thnz,in = K (m3,ij+1knz,!,k)uz -
Too,ie1kmane = K (Mo e 10 )
Tos pomzgrik = K (M g1t 5 )
Tonaijn, 1z = K ( "1,ﬁ+1km4,,jk)”2

— 1/2
Tt i+1knt e = K(ml,ij+lkn4,r )
i v

For simplicity we have taken Ax=Ay=Az Each of the above mass transfer terms
connects a subsite at position ijk with another subsite at position §j+ 1k The eight
transfer rules for the z-direction are

T it 1,1,k = K(ms,ykﬂml,gk)l/z
Tos k1,01, 05k = K("S,zjk+lnl,ijk)”2
Tz, e sl = K(m4,yk+1mz,z'jk)uz
Trz.giona i = K (g yrea s o) ?
Tt kvt m3, 5k = K(ml.z‘jk+lm3.fjk) 2
T ijican, 3,5 = K("l,ijk+| n:s,ijk)l/z
T onasitem2, 1 = K(ml,:jk+1m4,ijk)”2

1/2
Tra it g1 = Ko e 1 P i) 2,
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In addition, mass transfers can occur between subsites at the same position. These
transfer terms are

1., Liknl ik = E("l,.;fkml,.-jk)m

Tmz,ﬁknz,ﬁk = E("Z.:’jk mz,.-jk)m

T it main = E("a.ykms,rjk]m (43)
T s ik maijic = E("-t.qkma.rjh)”z

B =2Atuc?/ b

With these mass transfer terms the automaton rules for updating the masses at the
eight subsites at position ijk become

My e = My gt Tongivritom, e — Tml.i,fk,m4,i—ljk+ Toays vk gk — T it na,i- 15k
F Tz ik 1,mik — Tt itoms3,ge—1~ T int,ik

N = Byt Togivniontok = Tatieonai-1e ™ Tnvokma g+ T Tmagi-tkn1in
+ Tns,ijk-c-l,m,ijk T Lp1ikn3 k-1 + Tml,ijk,nl,ijk

Mo i = Mo+ Tons st ma,iie = Tz, ik, m3, -1k — Tz it n3. g1kt T3 -1k m2, bk
- Tmz.giic.m4.ijk+1 + Tm-t,gk-l,mz.ijk - Tmz,ijk.nz_ajk

Na e = M2 e+ Doz i knzik — Taz,pkona.i-jk + Tzt thonz ik — T2, ms,y—1%
- Tnz,gk,n4,g'k+1 + Tnl,l‘jk—l,nz,r'jk + Tmz,ﬁk,nz,i_rk (44)

M i = M i + T i pem3 i — Tond gk, m2,i- 1 T Tongrrimi e~ Lms sionz,g-1k
+ Tonvyerr,mzan — Tmsgrmyge=1+ Tus giomapk

Ns,ijk = N3+ Tnl,i+ Lk nd, itk TnB,ijk,nZ,:'—Uk - Tn3,r‘jk,m2,y+1k + Tm2.:’j—1k,n3,ijk
- Tnt,g‘;k+l.n3,ijk = L p3 kenlik—-1"" Tns,gk,ms,yk

M, g = Mo+ Ty vtk mage ™ Tona i, m,i=tjk = Tmayient g1k T Toer =1k, ma ik
= Tpatma kst T T et maoet Toa gt ma ik

Nk = BT Tovisvjionaine = Tragionti-iie T Tmygrtionase = Toapimi -1k
- Tn4,ifk,r:2:'jk+] + Tn2,g’;k—1,n4,ijk - Tn4,ljk,m4..jk .

Expressing the four component wavefunction in terms of real and imaginary
amplitudes

(%, y, 2 )=a(xy z )+ib(xyz1) v=1,2,3,4 (45)
relating mass terms to the amplitudes
m,(x, 3,2, ) =[a,(x 3 2 )] n(xy,z)=0b(x1,z0F (46)

and letting the spatial and time steps tend to zero, we can show by repeating the
procedure of the previous case that the update equations (44) for the automaton reduce
to the coupled set of partial differential equations

[(%‘/9)534' me/ih ]~ atidyhs—an =0
[(1/c)a.+ me/ it ], =8 — idyhs T4, =0
[(1/ ¢}, —me/ i1 — Bt + ISy — 3,40, =0
[(1/c)a, — me/ih]ga—3:ty — i3ty + 3,42 =0

(47)
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which is a form of the Dirac equation
ik 3ap + me By — the(a.d. + a8, + @.0. ¢ =0 (48)

where a,, @,, o;, and B are the Dirac matrices.

Both the vector and scalar potentials can easily be incorporated into the discretation
rules of the Dirac equation. The inclusion of these potentials involves additional mass
transfers between subsites at the same position, which is a straight-forward modification
of (43).

In summary, cellular automata have been presented for modelling quantum systems.
After the initial masses and directions of mass flows at each site have been specified,
spatially local updating rules, which depend on the masses of neighbouring sites,
determine the masses of the sites at future times. A significant feature of these spatially
local uwpdating rules is that they conserve mass and probability. In the limit of small
spatial and time steps, the equations defining the antomata reduce to the Schrddinger
and Dirac equations. Most if not all other local numerical methods for selving the
time-dependent three-dimensional Schrédinger and Dirac equations give solutions that
increase without bound for too small spatial steps or too large time steps. In contrast,
the solutions given by the methods presented here never increase without bound.
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