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LElTER TO THE EDITOR 

Cellular automata for quantum systems 

M D Kostin 
School of Engineering and Applied Science, Princeton University, Princeton, New Jersey 
08544, USA 

Received 28 July 1992 

Abstract. Cellular automata for modelling quantum systems are presented. The mass at 
each site is updated acwrding to rules that depend on the masses of neighbouring sites. 
An essential feature of these local rules is that mass and probability are conserved. In the 
limit of small’spatial and time steps it is shown that the equation defining one class of 
automata reduces to the Schrodinger equation and the equation defining another class of 
automata reduces to the D i m  equation. Advantages of these methods are discussed. 

Cellular automata have been defined as discrete space and time mathematical models 
of physical systems. The state of each site of the cellular automaton changes with each 
time step according to local rules of updating which require only the values of states 
of the nearest neighbouring sites at the previous time. Cellular automata, which were 
first considered by von Neumann and Ulam, have recently been used to model numerous 
physical phenomena including dithsion, sound waves, hydrodynamics and phase 
transitions [l-31. A cellular automaton for modelling the Schrodinger equation of 
quantum theory has also been presented, but the local updating rules do not conserve 
probability [4]. It is the purpose of this research to present cellular automata for solving 
the time-dependent equations of quantum theory which use local rules for updating 
and which conserve probability and mass. The methods presented here have significant 
advantages over conventional methods. Most if not all local three-dimensional conven- 
tional methods for solving the time-dependent quantum equations numerically give 
meaningless solutions that grow without hound if the spatial step is too small or the 
time step is too large. However, the methods.presented here, because they conserve 
mass and probability, can never give solutions that grow without bound. In addition, 
it is well known that the time-dependent SchrBdinger and Dirac equations, which are 
continuum equations in space and time, conserve mass and probability. If it should 
turn out that space or time or both are quantized and discrete, it is possible that the 
discrete equations presented here, which also conserve mass and probability, may give 
more accurate results than the continuum equations. 

First we will treat cellular automata for one-dimensional quantum systems and 
then we will generalize the results to three spatial dimensions. Each spatial site j 
consists of two independent subsites with the numbers mj and nj, which denote the 
mass at each subsite. The total mass at spatial site j of the quantum system is the sum 
of mj and n,. Mass is transferred between the subsite with mass m, and the subsite 
with mass nj+l .  The amount of mass transferred at each update is given by 

T. .  J J + ~  = ~ ( m n .  J J + 1  (1) 
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where h and p are the constants of the Schrodinger equation, At is the time step and 
Ax is the spatial distance between lattice points. The amount of mass transferred 
between the subsite with mass mj and the subsite with mass n,-, is given by 

q~j-l = K ( m i n i - p .  (3) 

q.i = AJ(nJmj)'/' (4) 

AjE2Kf71. (5) 
y j = 2 V , A l / h  (6)  

Finally, the amount of mass transferred between the subsite with mass n, and the 
subsite with mass mj is 

where V, is the potential at site j .  The initial subsite masses mj and nj are obtained 
from the initial wavefunction t j j  at site j 

t,bi = aJ -I ibJ (7) 

where the amplitudes a, and b, are the real and imaginary parts of the wavefunction 
at site j. The directions of transfer are determined by the signs of the amplitudes 

(10) 

= KaibJ-l (11) 

(12) 

Thus if the amplitudes a, and bi+, are both positive or both negative, the transfer of 
mass will take place from the subsite with mass m, to the subsite with mass nj+l. The 
rules (l), (3) and (4) determine the mass distribution at any later time when combined 
with the rule that all transfer directions at a subsfte are reversed when the mass at that 
subsite approaches zero. This reversal corresponds to a change in the sign of the 
amplitude at that subsite. We add the condition that the mass at any  subsite cannot 
be less than zero. Once the initial conditions have been given, the amplitudes themselves 
do not need to be calculated. Since mass is transferred from one subsite to another, 
mass and probability are conserved. 

Next we will show that in the limit of small time and spatial steps, the finite 
difference equation of the cellular automaton converges to the Scbrodinger equation. 
According to the automaton rules (l), (3) and (4) the updated mass MI at site j is 
given by 

Mj = mi - K (minj-l)x/2- K ( mini+l)'/2 + A,(mjni)"2. (13) 

Mj=mi-Kafii_,-Kajbi+l+Aiajbj. (14) 

T. . - ,.,+I - Kajb,+, 

T. J,J . = A.b.a. J J J '  

This equation can also be expressed in terms of the amplitudes 

In the limit of small time and spatial steps we have 

aa M, - mi = 2 A t  a(x, t) - 
Jt (15) 

a2b 
ax' bj-l -2bj + bj,, =(AX)' - . 
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Combining (2), ( 5 ) ,  (6), (14), (15) and (la), we obtain the partial differential equation 

Similarly the equation for the updated mass N, at site j 

N, = nj + K ( w + ~ ~ ~ ) ~ ’ ~ +  K ( m j + l n j ) l / 2  - Aj(mjnj)’/’ (18) 

gives us the partial differential equation 

Finally noting that the wavefunction +(x, t )  can be expressed in terms of real and 
imaginaiy amplitudes 

+(x,f)=a(x,t)+ib(x,t)  (20) 

we see that (17) and (19) are equivalent to the Schrodinger equation 

a+ h2 a’+ 
at  2fi ax2 

ih-= -- -+ V$(x, t ) .  

In order to determine how the discretization in space and time affected the results, 
a truncation error analysis was carried out on the update equations (14) and (18). 
Using Taylor series expansions, we found that the truncation error in time is O(At) 
and the truncation error in space is O((Ax)’). 

The rules for the cellular automaton were easily programmed. In order to eliminate 
the effect that occurs when the mass at a subsite is exactly zero, the average local mass 
was used in the transfer expressions. For example the transfer expressions (1) becomes 

where the averaging parameter 5 is much less than one and the starred quantities are 
the masses at the previous time step. Excellent results were obtained from this algorithm, 
which conserved mass and probability. 

The results are easily generalized to treat three spatial dimensions. The amount of 
mass transferred in the x-direction between the subsite with mass m i j k  and the subsite 
with mass is 

zj!++ljk = K z ( m U k n , + l j h ) 1 / 2  (25) 

and the amount of mass transferred in the x-direction between the subsite with mass 
mgk and the subsite with mass ni-ljk is 

(26) 112 
r j k , - l j k  = K x ( m q k n r - l j k )  
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Similar expressions apply for the y- and z-directions 

The amount of mass transferred between the subsite with mass ngk and the subsite 
with mass mdh is 

r j k " h  = A,k(nghm,J'2 (34) 

Aijk = 74% + K y  + K,) + Y g h  

ygk = 2 Kjk  A t /  h. 

(35) 

(36) 

The automaton rules for calculating the updated masses Muk and N " h  from the current 
masses mijk and nux are 

M g k  = mijh  - z j k i - l j h  - T j k 3 + i i k -  r j k i j - l h  - ?;jkg+lh - x , k , h - l  

- rjh..ilk+1+ (37) 

N. uh = n g h +  T-iljh,v&+ T + l j k i j k +  r j - l k i j k + T j + l k i j k +  ~ j k - I J j k  

+ z j h + i , g h -  Tijkuk. (38) 

As before, the actual directions oftransfer are determined by the signs of the amplitudes. 
In the l i t  of small time and spatial steps it can be shown by using the method 
discussed for the one-dimensional case that (37) and (38) reduce to the three- 
dimensional Schrodinger equation 

(39) 

If these automaton rules correspond in some sense to a law of nature then it should 
be possible to find automaton rules which conserve mass and which reduce to the 
Dirac equation in the limit of small step sizes. Since the wavefunction of the Dirac 
equation has four complex components, we consider an automaton where each spatial 
site ijk consists of eight independent subsites with the mass numbers and nv,ijh, 
where v = 1,2,3,4. The total mass at the spatial site &4 is the sum of these eight 
numbers. The essential feature of the automaton corresponding to the Schrijdinger 
equation is the update rule that the amount of mass transferred between adjacent 
subsites is proportional to the square root of the product of the masses of the two 
adjacent subsites. We have found that a Dirac automaton can be formulated by using 
similar update rules that specify eight mass transfers between eight pairs of adjacent 
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subsites. These discretization rules can be regarded as representing coupled maps. For 
the x-direction the eight transfer rules for subsites at positions gk and 1 f ljk are 

)i12 
Tm4.i+ijh,mi.ij~ K(%,a+i jkmi .g ,  

For example the mass transfer term Tm4.1+ljhml,0h gives the amount of mass transferred 
from the subsite with mass m4 at position i + ljk to the subsite with mass ml at position 
ijk in the time interval At. As before, if the initial amplitudes are positive at both 
subsites, the direction of transfer is from the first subsite to the second. All directions 
of transfer at a particular subsite are reversed as the mass at that subsite tends to zero. 
The eight transfer rules for the y-direction between subsites at position qk and position 
i j + t k  are 

112 
Tn4 ,~+i l jm i ,qk  = K ( n 4 , @ + i h m t , r J x )  

Tni.qrma,lj+ik = K(m4.r l+ikni . , jh ) t '2  

112 

1 /2  

Tm2,irkn3.@+lh = K(n3,v+l,m2,uk) 
Tm3.@+ikn2,ijk = K ( m 3 , ~ + i h k , o h )  

(41) 

112 
Tmi.ii+ihma.ijk = K ( m i , c + i k n s , q h )  , 

For simplicity we have taken A x = A y = A z .  Each of the above mass transfer terms 
connects a subsite at position ijk with another subsite at position V+lk The eight 
transfer rules for the z-direction are 

112 
Tm3.@k+i,mi.uk = K ( m 3 . g t + i m i , q x )  

112 
Tni,ljk+i,nr.tjk = K(n3 , l j k+1n! .gk )  

Tmz.~rma, i jk+i  = K ( % . i j r + i % j d  
112 



and letting the spatial and time steps tend to zero, we can show by repeating the 
procedure of the previous case that the update equations (44) for the automaton reduce 
to the coupled set of partial differential equations 

[( l / C ) J ,  + me/ ih]+, - J,+4+ iJy+4 - J&3 = 0 
[(l/c)J, + m ~ / i h ] + ~  -a,+, - iJ&+ J&h4 = 0 

(47) 
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which is a form of the Dirac equation 

U15 

ih J r ~ + m c 2 p ~ - i h c ( r u , J , + a ~ J , + a , J , ) ~ = 0  (48) 

where ax, ay, a,, and p are the D,irac matrices. 
Both the vector and scalar potentials can easily be incorporated into the discretation 

rules of the Dirac equation. The inclusion of these potentials involves additional mass 
transfers between subsites at the same position, which is a straight-forward modification 

In summary, cellular automata have been presented for modelling quantum systems. 
After the initial masses and directions of mass flows at each site have been specified, 
spatially local updating rules, which depend on the masses of neighbouring sites, 
determine the masses of the sites at future times. A significant feature of these spatially 
local updating rules is that they conserve mass and probability. In the limit of small 
spatial and time steps, the equations defining the automata reduce to the Schrodinger 
and Dirac equations. Most if not all other local numerical methods for solving the 
time-dependent three-dimensional Schrodinger and Dirac equations give solutions that 
increase without bound for too small spatial steps or too large time steps. In contrast, 
the solutions given by the methods presented here never increase without bound. 

This work was supported in part by a grant from the National Science Foundation. 

of (43). 
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